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Abstract

Automated cervical cancer screening is an efficient cell imaging based cancer de-

tection application of pattern classification that uses liquid-based cytology (LBC)

and Pap smear images. LBC and Pap smear images contain cells which can be

categorized into “normal” and “abnormal” categories. Screening system uses seg-

mentation approaches for feature extraction for successful classification. However,

successful classification depends on how accurately segmentation is done. In this

thesis, an auto-assisted cervical cancer screening without prior segmentation of

cervical cells is proposed. Transfer learning approach is used for fine tuning of the

new Convolutional Neural Network (CNN), i.e. weights of the convolutional and

pooling layers of a pre-trained CNN are transferred to new CNN. Fully connected

layers of the new CNN are initialed with values from gaussian distribution. New

CNN is then fine-tuned on the cervical cell dataset to learn new weights. Perfor-

mance of the CNN-based screening system is tested on Herlev dataset for two class

problem and seven class problem. Herlev cervical cell dataset consist of seven class

data, while two class problem is achieved by combining three normal classes i.e. su-

perficial, intermediate and columnar epithelial as normal class and four abnormal

classes i.e. mild dysplasia, moderate dysplasia, severe dysplasia and carcinoma as

one abnormal class. A distinguished feature of the proposed approach is that, it

achieves its objective without getting into conventional segmentation approach for

feature extraction. The immediate impact of this approach can be observed on the

classification accuracy of the system. Three different classification approaches are

used for comparison analysis on the classification accuracies i.e. softmax, SVM

and tree ensemble. Classification accuracies of softmax, SVM and tree ensemble

for two class problem is 98.8%, 99.10% and 99.23% respectively. For seven class

problem, classification accuracies of softmax, SVM and tree ensemble are 97.21%,

98.12% and 98.85% respectively. These results shows that the proposed system

yield better performance in all metrics i.e. accuracy sensitivity and specificity than

its previous counterparts as the previous best classification accuracies are 98.3%

for two class problem and 96.6 for seven class problem.
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Chapter 1

Introduction

1.1 Background

Cervical cancer is one of the fatal disease that causes death among women. Accord-

ing to a detailed survey, it was observed that 85% of the cervical cancer patients

are found to be infected at initial stage in third world countries. A straight for-

ward reason for this alarmingly high ratio is the unavailability of the required

fundamental medical resources in the regions. [1]. Countries with modern medical

resources aims at preventing cervical cancer by providing cervical cancer screening

systems to detect precancerous cells than can lead to invasive cancer. The Papan-

icolaou (Pap) smear testing is most commonly used for cervical cancer screening

worldwide.

In most developed countries, cervical cancer screening systems has been mostly

used for the diagnosis of cancerous and precancerous lesions . The rate of occurring

cervical cancer has dropped by 80% since the screening systems are introduced in

some Nordic countries [1]. It is dropped by 65% during the last four decades

and the occurring of cervical cancer and mortality figures due to cervical cancer

are stable over the last decade in Sweden [2]. In third world country Pakistan,

cervical cancer is listed third major cause of morality amongst women across all age

groups. The mortality figures are high because of ignorance in terms of screening

1
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NORMAL INFLAMMATORY

CANCER

Figure 1.1: Cervical cell description

and prevention in Pakistan . According to a detailed survey it was observed that

70% of the cervical cancer are diagnosed at the advanced stage of malignancy

which is the cause high mortality figures in the third world country like Pakistan

[3].

Cervical cells can be categorized into four types i.e. normal, precancerous and

cancerous cells as shown in Figure 1.1. Moderately and mild abnormal cells can go

away without any treatment on their own. Precancerous can be removed which can

prevent further development of cervical cancer. If precancerous are left untreated,

the may turn in to cancerous cells within the time span of 10 to 15 years [3].

Conventional pap smear test the most preferred to diagnose cervical cancer in

most of the countries.

1.2 Manual Screening

George N. Papanicolaou devised the Papanicolaou(Pap) smear test in 1928. The

main advantage of Pap smear test is the cost effectiveness. It is the most widely
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used detection program used for the diagnosis of cervical cancer. George N. Pa-

panicolaou found that abnormal cells can be distinguished within cells collected

from the vaginal smear. Dr. Papanicolaou and Dr. Herbert Traut, a gynecolo-

gist and pathologist, collaborated and provided scientific proof of the potential of

cervix for the identification of cervical changes [4].

1.2.1 Procedure

Conventional Pap smear procedure consist of the following simple steps:[5]

1. A speculum is inserted into vagina to widen the walls of the vagina so that

vaginal smear can be viewed.

2. A spatula is used to sample cells from inside and around the vaginal smear.

3. Samples are passed on to a glass slide.

4. Preservatives are applied on to glass slide to preserve the samples.

5. Samples are stained to improve the contrast and enhance the structural

patterns to be analyzed by the microscope.

1.2.2 Limitations

Several weeks are required to prepare for the final results of the Pap smear test.

Samples are taken from the vaginal smear and send the samples to the pathology

lab for visual analysis under the microscope[6]. The process is time consuming

and laborious. It requires microscopic examination of hundreds of thousands of

cells for the diagnosis of precancerous and cancerous cells. 1 in every 10 to 15

positive cases is missed in conventional screening[7].
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There are factors affecting the Pap smear test. Sampling error affects the Pap

smear test results if no diagnostic cells make it onto the slide. This is due to

human error when heath experts fails to adequately sample the vaginal smear. It

also occurs when the spatula fails to transfer precancerous and cancerous cells onto

the slide. Interpretation error also affect the Pap Smear test due to negligence of

human expert. These factors motivated the research in the field of automated

cervical screening systems[6, 7].

1.2.3 Automated Screening

Automated Pap smear screening systems can examine Pap smear slides in a small

amount of time with consistent classification results also catering the vulnerabil-

ities of conventional Pap smear test. The following are the ways in which the

conventional Pap smear test limitations can be countered[8]:

1. Improve sensitivity and specificity.

2. Reduced workload on pathologists.

3. Reducing the cost and time span.

4. Lowering the percentage of occurring of cervical cancer and mortality figures.

FocalPoint GS Imaging System by BD (Becton Dickinson) and ThinPrep Imag-

ing system by HOLOGIC, Inc are the FDA-approved cervical screening systems

available for the diagnosis of cervical cancer [9]. The FocalPoint GS imaging sys-

tem work both on liquid-based cytology (LBC) slides and Pap smear slides. The

system ranks slides based on the likelihood of malignancy and categorize them

into four classes: review, no further review, process review and quality control

review. No further review can be forwarded without human review. ThinPrep

system work only on Liquid biopsy cytology slides. The system takes 22 field of

view (FOV) slides from a total of 120 FOV which are of the diagnostic interest.

Then these 22 FOV are thoroughly reviewed by the pathologists.
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These systems are semi-automated, the pathologists reports the final results on the

basis of results generated by these systems. In the past decade, several research

has been done for the development of automated system based on image processing

and analysis methods[10] . Auromated screening systems works in the following

manner i.e.:

1. Segmentation of cervical cell components

2. Extraction and selection of features.

3. Cell classification.

Exact segmentation is a major challenge in cell segmentation because there are

other particles like mucus, blood cells are also present in the slide image. The

presence of overlapping cells are also a major problem in accurate segmentation

which causes the classification accuracy of the system to decrease. To overcome

the problem of low classification accuracy due to high segmentation error, deep

learning convolutional neural networks (CNN) are used to learn information and

discriminative features of raw data automatically [11]. In 2012, CNN have achieved

interesting results regarding ImageNet Large Scale Visual recognition challenge[12]

. Deep CNN also improved the performance of several medical imaging systems[13]

, such as: diseases of lungs, cervical intraepithelial neoplasia, blood vessel extrac-

tion, brain tissue extraction and classification and lymph nodes classification, etc.

CNN provides superior performance when used to classify cell image data [14].

CNN performs better on large datasets. For cervical cells, there is limited amount

of labeled data available. The HERLEV dataset contains only 917 cells [14]. To

cater this problem, transfer learning is used which is an effective technique in case

of small image datasets. The layers of CNN trained on large scale datasets can

be transferred to small scale datasets which reduces over-fitting and achieves high

training accuracy for small scale trained networks [12].



Introduction 6

1.3 Objectives

The aim of this research is to classify between normal and abnormal (cancerous)

cells image shown in Figure 1.1 and extraction of features without going into

segmentation of cells.

The objectives are:

1. Increase the number of samples in the small scale Herlev dataset by using

augmentation techniques such as rotation and translation of the images.

2. CNN previously trained on ImageNet dataset is used to fine tune a new

CNN on cervical cell dataset to learn and extract deep hierarchical features

automatically from the raw cervical cell images.

3. Several classifiers are trained on deep featured extracted from the deepest

layers of the CNN to evaluate the performance of the system.

1.4 Scope

As described in the objective section, pre-trained CNN model which is trained

on ImageNet dataset containing 1000 classes and 1.2 million images is fine-tuned

on Herlev Cervical cells dataset to discriminate cell images containing normal and

abnormal cells based on deep feature set. Transfer learning is an effective technique

to be use with small scale datasets. In the training phase, a pre-trained CNN on

ImageNet dataset is used to learn the features of Herlev dataset. In the testing

phase, classifier is trained on deep features learned by CNN to get the classification

score.
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Figure 1.2: Scope of the thesis.

1.5 Organization of Thesis

Chapter 1 has provided an overview of manual screening test, including its pros

and cons. The basis for the automation screening of Pap smear slides is also

discussed.

The phenomena of using CNN to extract deep features based on medical imaging

problems is described, addressing the problem of prior segmentation of the cervical

cell images. Aims, objectives and scope of this thesis is defined.

Rest of the thesis is arranged as follow:

Chapter 2 provides the literature review. A review of cell segmentation methods

of Pap smear images published in the literature. Also a review of feature selection

methods using CNN without prior segmentation is presented in the literature

review.
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Chapter 3 deals with the methodology used for the solution of problem. This chap-

ter explains the training of CNN, feature extraction and selection and classification

of cervical Pap smear slide images.

Chapter 4 elaborates experimental methods used in this thesis.

Chapter 5 represents the performance evaluation of the proposed system.

Chapters 6 explains limitations, conclusions and future work regarding the pro-

posed work.



Chapter 2

Literature Review

A review of methods published in the literature for the classification of Pap smear

images using segmentation approaches and without using segmentation approaches

is presented in this chapter.

2.1 Existing methods for cell classification with

prior segmentation

This section provides a review of the existing cell segmentation approaches used

for morphological feature extraction of cell components published in the literature.

A review of classification algorithms is also presented which are trained on features

extracted by using segmentation approaches.

A conventional pap smear slide image may contain cells which are normal, inflam-

matory, pre-cancerous and abnormal. These cells can be single and overlapping

[6] as shown in figure 2.1. Accurate segmentation of cervical cell is vital to the

success of automated Pap smear screening system. However, presence of large

shape, appearance dissimilarities and cell clusters between abnormal and normal

cell nucleus are the major problems in accurately segmenting the cytoplasm and

nucleus from the background [15].

9
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Classifying cervical cells into categories with only nucleus features are taken into

account yields less performance, segmentation of whole cell components i.e. nu-

cleus, cytoplasm and background components yields superior performance [16] .

Segmentation of overlapping cervical cells is a great challenge. Deformable tem-

plates are used for the segmentation of nucleus from cell images containing over-

lapping cell components. This is done by approximation and refining of locations

obtained from images and obtaining local deformations by using deformation mod-

els [17]. This work uses single image containing overlapping cells.

Pixel classification is a thresholding technique which is used to separate nucleus

background and cytoplasm by assigning gray levels to each pixel [18]. The method

works fine for the image containing single cells. In case of overlapping cells, the

segmentation error increases. Another method uses cell segmentation from the

background of pap image and block wise pixel classification (gray level thresh-

olding) to extract features. Then uses wavelet to carry out comparison between

different image features for selection to calculate the performance of multi-spectral

textural features from the cell images [19]. Another method uses a feature screen-

ing algorithm based on support vector machine’s decision boundary resulting from

Pap smear images. the cell image is segmented and features are extracted using

wavelet transforms. Then the screening algorithm is applied to the initial feature

set in order to remove features which are irrelevant to the cancer detection [15].

Seed based region growing technique is used for detecting edges of cell nucleus and

cytoplasm[20]. The approach is promising for single cell image containing single

cell images as it provides efficient results in segmenting the cell components but in

case of overlapping cell images the efficiency of the system degrades. Morphologi-

cal and textural features combination is used for the extraction of nucleus part in

conventional pap smear images, watershed transform is used as an segmentation

approach. The performance of the system is analyzed using unsupervised classifi-

cation (k-mean) and supervised classification (support vector machine) techniques.

As the approach work only on the nucleus of the cell image the other particles like
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inflammatory cells were not taken into account. However the existence of in-

flammatory cells is common among the Pap smear slide images. [21]. Therefore,

numerous methods are proposed in the literature to cater the problem of identi-

fication of inflammatory cell in conventional Pap smear images. The boundary

of the nucleus is first detected and segmented from pap smear slide image based

on morphological details of the image. Shape, texture and intensity of the nu-

cleus is then extracted. Feature selection scheme is used to select features with

back-propagation classifier to mitigate false positive findings of the system. Fuzzy

C-Mean clustering scheme is then used to differentiate between nucleus and in-

flammatory cells present in the pap smear slide image. Sensitivity and specificity

values of the system are 95% and 98% respectively [22]. Segmentation accuracy is

low in case of overlapping cells and inflammatory cells. To mitigate the effect of

inflammatory cells on the performance accuracy, gray level thresholding is used to

segment the nucleus and inflammatory cells, a definition of distance rule is used

to reduce the number of inflammatory cells from the segmented slide. [23].

Another method that uses rule classification of texture grey level run length matrix

GLRLM to extract and classify between nucleus and inflammatory cells present in

pap smear images by using rule texture of decision tree (J48). Further color coding

scheme is used to differentiate cell components which are nucleus, cytoplasm and

inflammatory cells. The system evaluates a specificity of 75.04% and a sensitivity

of 49.82% which means still some of the inflammatory cells are classified as nucleus

and some of the nuclei are classified as inflammatory cells [24]. Along with nucleus,

cytoplasm and background are also important for the better performance of the

system. several works in the literature has been done challenge this problem.

Atypical morphological details of cell for the diagnosis of abnormal cells is also of

importance. Unsupervised genetic algorithm which relies on genetic operators and

uses fisher classification to separate nucleus, cytoplasm and background portions

of the cell. Morphological features used for the recognition system are size of the

nucleus and cytoplasm, homogeneity texture i.e. intensity mean and variance and

deformity of the cell components. The system does not take overlapping cells into

account and works only on single cell images [25].
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Segmentation of each pixel of the cell image is done in a specific wave band with

respect to the intensity, spectrum relationship of each pixel. Features of each pixel

of Pap smear single cell image are extracted using cosine correlation analysis. Fea-

tures used in this work are size of the cell components i.e. nucleus and cytoplasm,

wavelet characteristics of cell components and color intensity. The work intended

to improve the specificity and sensitivity of the system [26].

Classification of pap cell image depending only on the segmentation of nucleus

part neglecting cytoplasm and other cell particles. Feature extraction is based

solely characteristics of the nucleus[27].

Gabor filter hybrid with k-mean clustering is used for the classification of cyto-

logical cervical images. Gabor filters are applied to each pixel of a cervical image

containing normal, inflammatory, pre-cancerous and abnormal cells to detect the

textural variation of the cervical cells. These extracted textural variations are

localized textural features based on frequency and orientation. features vectors

are generated for each pixel and compared with feature variations extracted by

gabor filter bank. Segmentation process uses a color coding scheme i.e. red and

green for abnormal and normal cells respectively and blue for the background of

the pap image. segmentation images are further processed by k-mean clustering

algorithm to differentiate between normal and abnormal cells. the classification of

the segmented images processed by k-mean clustering is done according to shape

of the extracted nuclei. The sensitivity of normal and abnormal cells is 87% and

89% respectively and specificity of the system is 85% [28].

Fuzzy C-mean clustering technique is used as a segmentation technique to au-

tomatically segment single cell images into nucleus, cytoplasm and background,

After segmentation, features are extracted based on nucleus and cytoplasm seg-

mented from pap images. Six features based on nuclei are used in this works which

are total number of pixels in the nucleus region, compactness of the nucleus, length

of major axis enclosing nucleus, length of minor axis encloses the nucleus, aspect
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ratio of nucleus, homogeneity and nucleus to cytoplasm ratio. the repones of dif-

ferent classifier is analyzed for the system and achieved classification accuracy of

93.78% with artificial neural network as a classifier [29].

All of the methods discussed in this section uses single cell images in which some

contains multiple cell components and overlapping cells. All the methods are

based on textural and morphological features extraction from cell images. Accu-

rate segmentation of nucleus is a difficult task because of the presence of other cell

particles. It can be infer that the performance of the system is high when there

are cell image containing single nucleus and a single cytoplasm. In case of overlap-

ping cells i.e. when there are multiple cell components in a single cell image and

inflammatory cells, the performance of the system is low as the segmentation error

is high in this case. To overcome the problem of high segmentation error in pap

smear cytological imagery, deep learning approach is a good candidate as it does

not go into segmentation for the extraction of features. this approach undergoes

extraction of deep features extracted directly from the raw data. Performance

of the system is evaluated by using different classifiers trained on extracted deep

features from raw data.
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Table 2.1: Feature based approaches comparison with prior segmentation

References
Segmentation
Method

Dataset
Performance
Measure

Bamford et al. [30]
Active
Contours

20130 (Single Cell)
99.6% segmentation
accuracy

Lezoray et al. [31]
Watershed
Transform

209 cells from 10
Pap slide images

2.8% (RGB) and
0.47% (HSI) Seg. Error.

Yang Mao et al. [32]
Edge
Detector

124 (Single cell)
Segmentation error of
0.1523 for nucleus and
0.0775 for cytoplasm.

Lin et al. [33]
Edge
Detector

10 (Single cell)
Segmentation error of
0.1323 for nucleus.

Bak et al. [18]
Iterative Pixel level
Thresholding

1 No Quantitative measures

Garrido et al. [17]
Deformable
Template Fitting

3 Pap slide images No Quantitative measures

Plissitiet et al. [34]
Edge
Detector

5617 cells from 38
Pap slide images

Sensitivity: 90.57%(FCM),
69.86%(SVM).
Specificity: 75.28%(FCM),
92.02%(SVM)

Rahmadwati et al. [28]
Gabor filter hybrid
along with k-Mean clustering

475 labelled
Pap cell images

Sensitivity (Normal): 87%.
Sensitivity (abnormal): 89%
Specificity: 85%

Muhimmah et al. [22] Fuzzy C-Mean
321 cell images
from 20 Pap images

Sensitivity: 95%.
Specificity: 98%

Chankong et al. [29] Fuzzy C-mean
917
Single Cell images
containing overlapping cells

Accuracy (ANN): 93.78%
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2.2 Existing methods for cell classification with-

out prior segmentation

Most of the techniques proposed in the literature performs segmentation in the lo-

cal image patches i.e. images with single nucleus, cytoplasm and the background.

They are unable to provide higher segmentation accuracy in case of pap images

containing overlapping and inflammatory cells. The boundary of cytoplasm cell

is usually not smooth, it is the most complicated task to separate the cytoplasm.

irregular shape pattern of cytoplasm is also a limitation in achieving segmenta-

tion accuracy. The extent of occurring overlapping cytoplasm including nuclei

is very high in Pap smear images [35]. The classification accuracy of single cell

segmentation of Herlev dataset [36] ranges from 85% [37] to 92% [38]. In case of

overlapping cell taken into account, the classification accuracies vary from 87% to

89% [39]. Most of the Pap smear cell classification works assume that cytoplasm

and nucleus are accurately segmented, however in real world there are other par-

ticles along with cytoplasm and nucleus in the background which are blood, air

drying, bacteria and mucus. These particles also affect the segmentation results

of the system [27]. High classification accuracies are achieved using the features

extracted from segmentation of cytoplasm and nucleus on Herlev Dataset while

neglecting other particles present the cell background of a pap smear image. These

high accuracies could decrease if the segmentation error due to cell particles other

than nucleus and cytoplasm are taken into account [40][41].

Correct segmentation of segmentation and cytoplasm is most important task for

achieving high classification accuracy of the system. The major problem of meth-

ods using the segmentation of the nucleus, cytoplasm and the background is low

segmentation accuracy which is due to non convex nature of the cell particles,

overlapping of cytoplasm. It can be seen that cytoplasm and nucleus of one cells

are covering the the cytoplasm of other cell, the bacteria particles present on the

surface of the cytoplasm and the irregular cell boundary of cytoplasm in Figure

2.1[29].
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Figure 2.1: Pap Slide Image containing overlapping cells [41]

Current Pap smear cervical cell classification systems are limited by feature design

and extraction. Current feature types regarding Pap smear cervical cell images

are either handcrafted or engineered using The Bethesda System rules. The hand-

crafted features define the morphological and chromatin patterns characteristics of

the Pap smear cell images , either the morphological features or textural features

are used or sometime hybrid features having both types of features are used for

the classification task [42].

Several efforts has been made to partially remove the dependency on the seg-

mentation of nucleus, cytoplasm and background for feature extraction. A good

performance is achieved using a non-linear dimensionality algorithms (Kernel-PCA

(K-PCA), Isomap, Locally Linear Embedding (LLE) and Laplacian Eigenmaps)

for feature extraction along with supervised learning for classification using sup-

port vector machine [43]. Another method proposes block image processing to crop

arbitrary image blocks prior to feature extraction and then the cropped blocks are

then classified using SVM classifier [44]. The arbitrary cropping of Pap smear slide

can leads to cropping of cell images into different blocks.

Deep learning algorithms have achieved good reputation for its ability to learn mid

and high level image representations. CNNs are first introduced to medical imaging

problems in 1996 by Sahiner et al, in this work regions of interest are extracted

either masses or normal tissues from the mammogram [45]. in this work CNN

with two hidden layers, input and a output layer was used with bach-propagation
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Representation learning achieve good popularity due to deep learning methods.

Performance of machine learning methods depends on the representation (or fea-

tures) of data. Representation learning is referred to set of methods design to dis-

cover and learn discriminative information from the data. Representation learning

has strong impact on speech processing, natural language processing and object

recognition with breakthrough results [11].

Deep CNN have achieved very impressing performance in 2012 ImageNet Large

Scale Visual Recognition Challenge. Main objective of the challenge is to classify

the 1.2 million high resolution images in ImageNet LSVRC-2012 dataset to 1000

classes [12].

CNN have proved to be providing significantly better performance in various med-

ical imaging applications [13], such as vessel segmentation [46] in fundus images,

lymph nodes and lung deceases classification in CT images [43], detection of cer-

vical intraepithelial neoplasia at patient level on the basis of cytological cervical

images [47] and segmentation of brain tissues in MRI scan images [48]. CNN have

provided significant performances over the classification of cell type images such

as human epithelial images and pleural cancer cell images. Transformation of seg-

mentation problem into labeling problem by predicting pixels probability using

deep convolutional neural network and contrast level set to improve the accuracy

of splitting boundaries of cervical cells [35].

A method uses deformable templates to label cells in pap smear slide images and

multi-scale deep convolutional neural networks are then used to extract feature of

the labeled cells. the classification accuracy achieved is 94% for the nucleus and

89% for cytoplasm detection [49]. Features are extracted using CNN on herlev

dataset, feature selection is done by principle component analysis (PCA) and the

classification is done using LSSVM (Least Square Support Vector Machine) and

softmax. The maximum classification accuracy achieved with feature selection

for herlev dataset is 84.41% and maximum accuracy without feature selection is

88.88% [27].
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Figure 2.2: First Layer weights of a trained network [44]

Transfer learning approach is used for the feature extraction and classification of

pap smear images. first layer features of a previously trained network are trans-

ferred to a new network, new network is then trained on cervical images to learn

features on the last layers of the networks. Features are extracted and softmax re-

gression is used for the classification. classification accuracy of 98.8% is achieved

[50]. Large datasets are of very importance to the performance of CNN. Small

datasets leads to over-fitting of the network i.e. CNN does not achieve its max-

imum training accuracy. Transfer learning is a promising approach to be used

when the size of the dataset is small. Features learned in first layer of CNN re-

semble gabor filters or color blobs as shown in figure 2.2. these first layers features

are not specific to different datasets and are very generic features. therefore these

features are applicable to different datasets. the transition of features from generic

to specific occurs by the last layer of the CNN [44]. The weights of first layers

i.e. convolutional, pooling and linear unit of the CNN previously trained on Ima-

geNet dataset [51] are transferrable to other medical imaging problem where the

size of dataset is small. Several approaches have been used for the classification

of cervical cancer based on Herlev cervical cell dataset. Performance comparison

of some of the work done in the literature on deep learning for the classification
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of cervical cancer on Herlev University dataset is presented in Table2.1 with per-

formance metrics sensitivity (Sens), specificity (Spec), accuracy (Acc), harmonic

mean (H-mean), harmonic average (F-measure), area under the curve (AUC) and

cross validation (CV).
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Table 2.2: Hybrid and deep features based approaches without segmentation

References Method Dataset
Performance
Measure

Jantzen et al. [38]
Pap Smear
Benchmarks

Herlev Dataset
Accuracy : 93.6%
Sensitivity : 98.8%
Specificity : 79.3%

Jantzen et al. [37]

Particle swarm
Optimization
and nearest neighbor (1nn)
Classifier

Herlev Dataset
Accuracy : 96.7%
Sensitivity : 98.4%
Specificity : 92.2%

Marinakis et al. [52]
Genetic Algorithm based
Feature selection and
1-nn Classifier

Herlev Dataset
Accuracy : 96.8%
Sensitivity : 98.5%
Specificity : 92.1%

Plissiti et al. [39]
Principle Component Analysis
for Feature selection and
SVM Classifier

Herlev Dataset Harmonic Mean : 96.9%

Bora et al. [27]
Ensemble
Classifier

Herlev Dataset
Accuracy : 96.5%
Sensitivity : 99%
Specificity : 89.7%

Guo et al. [40]
Local Binary Pattern
for feature extraction

Herlev Dataset Area under the curve : 96.4%

Zhang et al. [50]
Convolutional Neural Networks
for deep feature extraction and
Classification

Herlev Dataset
Accuracy : 98.3%
Sensitivity : 98.2%
Specificity : 98.3%



Chapter 3

Feature Extraction and Training

Methodology

In this work, Deep Convolutional Neural Networks (CNN) are applied for the pur-

pose of feature extraction of cervical cells in cytological images. The performance

of different classifier is evaluated for comparison. Augmented RGB image data i.e.

multiple instances of single image are generated by using rotation and translation

operations from Herlev dataset centered on nucleus are used to increase the size

of cervical image dataset. A pre-trained CNN named Alex-Net trained on a nat-

ural dataset named ImageNet dataset is used to fine-tune a new CNN on cervical

dataset to learn discriminative information between images containing malignant

and benign cells depending on deep hierarchical features. Fine-tuned CNN is then

used to classify cell patches roughly centered on nucleus. Classification results are

grouped to produce final cell category. Core work of this thesis is to extract deep

hierarchical features of Pap smear images without going into prior segmentation

and morphological or textural feature extraction and train different classifiers on

extracted deep features. The comparison is taken out between different classifiers

on the basis of classification accuracy, sensitivity and specificity. In this way the

classification accuracy does not get affected by accuracy loss which is caused by

inaccurately segmented cell component. This approach consist of two phases, a

train and a test phase as shown in Figure 3.1. In the train phase, a CNN previously

21
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Figure 3.1: Architecture of proposed scheme

trained on natural dataset is applied on Pap smear dataset after data preprocess-

ing. Transfer learning is then applied. The parameters of pre-trained CNN are

then used to start a new CNN. New CNN is fine-tuned on the augmented Pap

smear dataset. In the testing phase, same data preprocessing is applied to the

test images and fine-tuned CNN is applied on the test set and malignancy score

is obtained by aggregation the output of the fine-tuned CNN.

3.1 Data Preprocessing

Data processing phase includes image patch extraction from the cervical cell

dataset and augmentation of data for the CNN.
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3.1.1 Image patch extraction

The method does not directly operates on single cell images present in Herlev

dataset. To get individual cell, pre-segmentation is required. At least segmen-

tation of cytoplasm is required, which is a challenging and unresolved problem.

Malignancies of several categories of cervical cytology are associated with types

of malignancies of the nucleus. Thus substantial discriminative information is

available in features of nucleus. Image patches of size M x M centered on the

nucleus center should be generated as this will embed not only the size and scale

information of the nucleus but also the textural information i.e. the information

of the cytoplasm in the extracted image patches. Scale and size of the nucleus is

a very important discriminative feature between malignant and benign cells. In

this thesis, the image patches are extracted by directly translating the centers of

nucleus present in Herlev dataset. The method of extraction of image patches is

described below.

3.1.2 Image Augmentation

Image data augmentation techniques are used to virtually increase the size of

training dataset and reduces overfitting [12]. Data augmentation can be done by

linear transformation of the data such as mirroring, scaling, translations, rotation,

color shifting unless the information of the object in the image is intact. Data

augmentation can also be done during training. For that parallel processing is

used, one thread for augmentation and passed on the other thread which is training

the CNN. Since cervical cells are invariant of rotations and can be rotated from

0-360 with a step of angle θ. Nr rotations are performed over the dataset, thus

increases the number of training samples.

Each cell image is rotated with a step of θ and Nr patches are generated. These

patches are centered on the center of the rotated nucleus. The training image

patches are shown in Figure 3.3. The high frequency component may degrade

due to the rotation of the cell image but malignancy/benign information of the
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Figure 3.2: Data Augmentation using rotations and translations

cell image is still intact. Data augmentation step is of great importance to the

success of CNN [53]. It has been proved to be crucial for accuracy improvement

of CNN-based cell image classification applications [54] as the training samples in

the Herlev dataset are limited. Image patches are zero padded for the regions that

lie outside the boundary of the image.

As in practice, the nucleus detected in the cell image dataset are inaccurate. Ran-

dom translation of each nucleus center Nth horizontally and Ntv vertically are

performed upto d pixels is used to obtain Nth and Ntv points as the coarsely cen-

tered nucleus. Therefore, translated image patches Nth and Ntv of size mxm are

generated to be used as training samples as shown in the Figure 3.3. The detec-

tion of inaccurate nucleus center is simulated and number of training samples are

increased to be fed to CNN using these translated image patches. Other augmen-

tation techniques like scaling, color shifting and shearing is not used as the color

intensity and size of the nucleus is important to classify between malignant and

benign cells.

The malignant cells in the Herlev dataset are 3 times more than the benign cells.

Classifier tend to be biased towards the majority class i.e. malignant cells. Achiev-

ing correct classification score is ideal from medical perspective [38], from medical

point of view, incorrect classification i.e. classify benign cells as malignant is not
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important. To address the biasness in the data, common solution is to evenly

distribute the ratio of positive and negative samples of data [55]. This will im-

proves the convergence rate of training of the CNN. Also the classification accuracy

of CNN improves [12]. To balance the training set, higher proportion of benign

training samples are generated as compared to malignant training samples.

3.2 Deep Convolutional Neural Networks

A convolutional neural network is a deep learning model consisting of sub-sampling

layers, which are convolution, non-linear and pooling layers consecutively followed

by more convolutional layers, drop-out layers and the final layers are fully con-

nected layers. The input to the convolutional layer of the CNN is a raw pixel im-

age. In this thesis, the image at the convolutional layer as input is a zero-centered

normalized image from the dataset. The images is obtained by subtracting the

mean activity over the dataset [12]. Final layer or the classification layer consists

of neurons each corresponding to one class. Back-propagation algorithm is used

to optimize the weights of the CNN [55]. Proposed scheme is shown in Figure

3.1 showing two CNNs. First network CNN1 is trained on natural dataset i.e.

ImageNet, while the second network CNN2 is initialzed with weights of the layers

of CNN1. CNN2 is then fine-tuned on the Pap smear dataset containing cervical

cell images . Fully connected layer contains abstract information of the image fea-

tures, these features are extracted from fully connected layer to be fed to classifier.

Softmax, SVM and decision tree classifier is used to produce the malignancy score.

3.2.1 Convolutional layer

Convolutional layer of the CNN takes local rectangular image patches extracted

from the cervical cell image as an input at first layer conv1. The input at conv1 is

with offset by stride. The spatial information can be preserved by using padding.

The subsequent convolutional layers takes feature maps as input. 2-Dimensional
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convolution with a filter is performed at the conv layers. A non-linearity function

is then exerted to the sumx of the convolutions at the convolution layer. A rectified

linear unit (ReLU) is used [12] to speed up the training of the CNN presented in

Equation 3.1.

f(x) = max(0, x) (3.1)

Convolution layer shares same filter across the feature map to allow the detection

of same patterns in different positions of the feature maps. For different feature

maps distinct filters are used.

3.2.2 Pooling layer

The operation of the pooling layers pool is to down-sample the feature maps by

summarizing the responses of the features in each incoming local rectangular patch.

This is done by calculating the maximum activations. The phenomena is named

as max-pooling. This makes features become invariant to slight translations in the

data. Classification probability for each class is computed by two neurons at the

last fully connected layer using softmax regression.

3.2.3 Fully connected layer

Feature maps generated by convolutional and pooling layers are of smaller dimen-

sions as compared to the input images. Feature maps generated at conv and pool

are passed on to several fully connected layers. Feature vector is generated by ini-

tial fully connected layers and become more abstract in the deeper fully connected

layers.
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3.2.4 Training

The weights of the Convolutional neural network (CNN) are initialized from the

Gaussian distribution. Stochastic gradient descent is used to compute the gra-

dients of loss to iteratively update the weights at the layers of the CNN during

the training process. Batch size of training samples from the dataset is set to

256 training samples per epoch. Initial learning rate for the fully connected last

layers of the CNN is set to decrease after specific number of epochs are passed.

Momentum is set to 0.9 and L2-regularization or weight decay is set to 0.0005

to reduce over-fitting and speed up learning process [12]. The network is trained

for certain epochs and terminated. Several models of CNN are trained, the CNN

model having minimum validation loss is used for classification application.

3.3 Training using Transfer learning

Transfer learning is the most promising technique in deep learning when training

set size is small and not enough for the network. Smaller datasets lead CNN to

over-fitting. A pre-trained CNN can be used as a starting point to learn a new task.

Training a network and initializing weights from scratch is very time consuming

as compared to fine-tune the CNN by using CNN models that are pre-trained on

large-scale image data sets. The weights at the convolutional and pooling layers

of pre-traind Alexnet CNN ?? pre-trained on ImageNet dataset (ILSVRC2012)

are used as initial layers for the new CNN, which is to be trained on Pap smear

dataset. Random weights are initialized to fully connected layers fc. Convolutional

and pooling(convandpool) layers are transferred to the same locations from pre-

trained CNN to new CNN. To fine tune the new CNN layers, learning rate for

convolutional and pooling layer is reduced 10 times as compared to the rate used

for the training of pre-trained CNN. For fully connected layers of the CNN, same

learning rate is initialized as used in pre-trained CNN.
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Figure 3.3: Layer Transfer Pre-trained CNN to new CNN

3.4 Feature extraction

Convolutional neural networks are feed forward networks as input received on

in-between layers are features generated by the previous layers. There are three

fully connected layers in the fine tuned network i.e. fc6, fc7 and fc. In this work,

the deepest layer of the network i.e. fully connected layer fc7 is selected as the

feature vector. fc7 is the last layer before the output layer. The reason for the

selection of fc7 is that it contains more specific and abstract details of the pap

smear images. Feature vector extracted from fc7 is number of training samples

Xt x 4096 dimensional vector. Different classification approaches are used for

the comparative analysis of classification accuracy, sensitivity and specificity of

the system. The details of the classification approaches are provided in the next

chapter.



Chapter 4

Classification Methodology

As described in the previous chapter, Deep hierarchical features extracted from

the fully connected layer are used to train classifier on the Herlev Pap smear data.

4.1 Classification

Three classifiers are used for cervical cell classification namely SVM, softmax and

Decision tree classifier. The response of each classifier is analyzed individually.

Classifiers are trained on the deep features extracted from the fully connected

layer of fine tuned convolutional neural network. The performance comparison

of the classifiers is based on performance measures i.e. Area under the curve,

Accuracy, Specificity and Sensitivity.

4.1.1 Softmax regression

Softmax regression is a generalized form of logistic regression that is used for

multi-class classification. Convolutional neural network uses a loss function i.e.

cross entropy known as softmax activation function as shown in figure 4.1 at the

softmax layer. Softmax provides a non-linear variant of logistic regression [56].

Softmax layer of CNN is shown in figure 4.2

29
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Figure 4.1: Softmax activation function
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where we define the network input z as

z = w0x0 + w1x1 + ...+ wnxn =
n∑

i=0

wixi = wTx. (4.2)

w is the weight vector, x is the feature vector of 1 training sample, and w0 is

the bias unit. This softmax function computes the probability score that training

sample xi belong to class j given the network z.

The probability score is generated at the softmax layer of CNN which is next to

fully connected layer. Cross entropy function is used for the classification at the

final layer of the CNN.
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Figure 4.2: Softmax layer of Convolutional neural network

4.1.2 SVM

The reason for choosing SVM is its superior performance on medical imaging data.

The results of SVM for non-linear boundaries are very impressive[57][58][59]. Sup-

port vector machines (SVM) is supervised learning model that uses an optimiza-

tion method to identify support vectors si, weights αi, and bias b that are used to

classify vectors x according to the following equation

c =
∑
i

αik (si, x) + b (4.3)

Where k is a kernel function. In the case of a linear kernel, k is the dot product. If

c ≥ 0, then x is classified as a member of the first group, otherwise it is classified

as a member of the second group.

Error correcting code classifier is trained using support vector machine. The batch

size is set to 256. training set is given to the classifier along with deep hierarchical

feature vector using convolutional neural networks. validation data is then fed to

the classifier to get the validation accuracy of the Herlev dataset.

Further information on SVM can be found at [60].

4.1.3 Ensemble of Decision trees

Ensemble of Decision trees are classification or regression trees used to predict the

response of the data. In order to predict the response, the decisions about the

belonging classes are followed from the initial or the root node to the end of the

leaf node. Response of the data is contained within the leaf node. Classification

tree provides nominal response while regression tree provides numeric responses.
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Figure 4.3: Decision Tree Classifier

The reason for choosing decision tree ensemble is its exploitation of randomness.

For further information decision tree ensemble please refer to [61][62]. As shown

in Figure 4.3 .This tree starts with two predictors x1 and x2. If x1 is less than 0.5

it is moved to the left, tree classifies it class 0. If not so the decision is moved to

the right, where checks for x2 less than 0.5 moves to left node and classifies it as

class 0 else classified as class 1.

Ensemble of decision trees is trained on the training data, number of trees are 100

and the batch size is set to 256.

Validation accuracy of the Herlev dataset is evaluated using validation data.

4.2 Testing

Multiple crops of unseen test images [12] are fed to the system and prediction

score is generated from classifier for each of the cropped image. The score is then

aggregated to achieve the final score [63] as shown in figure 4.5

In the data augmentation step, Np images are generated which includes rotated

and translated images. From each generated image patch, Nsp crops are generated
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Figure 4.4: Classification System of Herlev Pap Smear Images
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Figure 4.5: Multiple Crop testing Scheme

which includes 4 corners, center and their mirrored images. Therefore, for each

test image, NpxNsp are fed to the classifiers. Final score is achieved by aggregating

or averaging the scores of NpxNsp predictions.



Chapter 5

Implementation and Performance

Evaluation

5.1 Herlev Dataset

The cervical cell data used for the training and testing of CNN comes from Herlev

Pap smear dataset. Herlev dataset is publically available 1 generated at Herlev

University Hospital. The cell images are collected by a digital camera and a mi-

croscope [38]. The resolution of cell images contained in the datasets is 0.201 um

per pixel[36]. Conventional Pap smear staining and processing is used to generate

specimens. The Herlev Pap smear dataset contains 917 single cell cervical cell im-

ages with ground truth classification and segmentation. The cells are categorized

into seven different stage classes. These seven classes are diagnosed by doctors

and cytologists to increase the reliability of the diagnosis. Further these seven

classes are categorized into two categories i.e. malignant and benign. classes from

first class to third class are normal or benign, while fourth to seventh class are

abnormal or malignant classes. The classes distribution is shown in Table??.some

of the examples of normal and abnormal images are shown in Figure 4.1. It can be

seen that the size of the nucleus in malignant or abnormal cells is larger than that

1http://mde-lab.aegean.gr/index.php/downloads
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Figure 5.1: Normal Vs Abnormal Images in Herlev Dataset.

of normal cells. The challenging task from classification perspective is that the

normal columnar cells have nucleus size quite similar to that of severe nucleus, also

chromatin distribution is same. For data augmentation to reduce over-fitting and

increase the size of the training samples as large samples are crucial for CNN per-

formance, transformed copies of each and every cell image in the original dataset

are generated for both malignant and benign cells. For all benign cell in the Herlev

dataset, Nr = 10 rotations where θ = 36◦, Nth = 15 translations up to 15 pixels

horizontally and Ntv = 15 translations up to 15 pixels vertically are performed.

For each abnormal cell in the Herlev dataset, Nr = 10 rotations where θ = 36◦,

Nth = 8 translations up to 15 pixels horizontally and Ntv = 8 translations up to

15 pixels vertically are performed. This processing results in 300 image patches

for a single cell for normal category and 160 image patches for a single cell for

abnormal category. This transformation yields relative normal distribution as the

number of samples of abnormal cell images is large as compared to that of normal

cell images. The size of the generated image patch is set to m = 128 pixels to

cover cytoplasm region. These patches are then up-sampled to a size 256x256x3

using bi-linear interpolation. These up-sampled image patches are fed to the CNN

for initiating layer transfer and training[53].



Implementation and Performance Evaluation 36

Table 5.1: Herlev Dataset

5.2 Architecture and Implementation

Architecture of network is shown in Figure 4.2. The base network CNN1 is pre-

trained on ImageNet classification natural dataset. CNN1 contains five convolu-

tional
(
conv

)
layers denoted as conv1 − conv5, followed by pooling

(
pool

)
layers

denoted as pool1, pool2, pool5 and there are three fully connected
(
fc
)

layers as

fc6, fc7andfc. conv layers and pool layers are transferred to CNN2 at the same

locations. In other words all conv and pool layers are copied from pre-trained

network to new network to be trained on cervical cell dataset.Fully fc6, fc7andfc

layers of CNN2 are initialized with values from random gaussian distributions.

Configuration of CNN2 is listed in Table 5.2. Local response normalization for

conv1, 2 is set according to the settings in [12].

Hidden layers are used with rectified linear units activation function. CCN1 and

CNN2 shares same structure from conv1 to pool5. Number of neurons in fc layer

of CNN1 and CNN2 are 4096 - 4096 - 1000 and 4096 - 4096 - 7 in case of 7 class

problem, while number of neurons in fc layer of CNN2 are 4096 - 4096 - 2 in case

of 2 class problem.

5.3 Training

Each image patch from augmented dataset, a 227 x 277 patch is cropped randomly

and mean image over the dataset is subtracted to zero-center normalize the image.

227 x 227 is cropped for the reason that CNN1 takes 227 x 227 x 3 image at its input
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Table 5.2: CNN Configuration

Filter Size Channel Stride Padding
Input - 3 - -
First Convolutional layer
(conv1)

11 x 11 96 4 -

First Pooling Layer
(pool1)

3 x 3 96 2 -

Second Convolutional Layer
(conv2)

5 x 5 256 1 2

Second Pooling Layer
(pool2)

3 x 3 256 2 -

Third Convolutional Layer
(conv3)

3 x 3 384 1 1

Fourth Convolutional Layer
(conv4)

3 x 3 384 1 1

Last Pooling Layer
(pool5)

3 x 3 256 2 -

Full Connected Layer
(fc6)

- 4096 - -

Fully Connected Layer
(fc7)

- 4096 - -

Last Fully Connected Layer
(fc)

-
7 (7 Classes)
2 (2 Classes)

- -

layer. Stochastic gradient descent (sgdm) is used for the training of CNN2 for 30

epochs. Small batches of image patches are fed to the CNN2, validation accuracy

of batches are calculated. The size of Mini-batch is set to 256. Initial learning

rate for convolutional and pooling layers is set to 0.0001, which is decreasing with

a factor of 10 after every 10 epochs. L2-Regularization or weight decay is set to

0.0005. Momentum is set to 0.9. L2-Regularization and momentum can be tuned

to reduce over-fitting of the CNN.

5.4 Testing

In order to test a new unseen image to the system, multiple patches (as for training

data) and multiple crops of test image are generated. Abnormal score of each of

the crop is generated by the classifier. The abnormal scores of all NtestxNcrop

patches of the test image are aggregated to generate the final score [51]. Patches
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of test image Ntest = 300
(
10 rotations x 30 translations

)
are generated same as

the training images. Further ten cropped images Ntest

(
four corner, center of

cell i.e. nucleus portion and their mirrored images
)

are generated from each of

the test patch. These NtestxNcrop image patches are fed to the classifier. The

prediction score of the classifier
(
Softmax regresseion, SVM, Tree Ensemble

)
is

then aggregated to calculate the final score.

5.5 Evaluation Parameters

Evaluation of the cervical cell classification task is done using 5-fold cross valida-

tion on Herlev dataset for both two class problem and seven class problem. The

performance metrics used for evaluation include accuracy, harmonic mean, area

under the curve, specificity and sensitivity. Detail of the performance metrics is

provided in Table 5.3. Finally the number of correct classification score is obtained

Table 5.3: Performance metrics for analysis

Sensitivity Number of correctly classified malignant cells.
Specificity Number of correctly classified benign cells.
Accuracy Global correct classified cells.
Harmonic-mean 2 ∗ (Senstivity ∗ Specificity)/(Senstivity + Specificity)
AUC Area under the curve

for each cell from all the categories in the Herlev dataset.

5.6 CNN Training

CNN2 is fine-tuned on Herlev dataset for 2 class problem and 7 class problem

for 30 epochs as illustrated in Figure 5.2 and Figure 5.3 respectively. Validation

accuracy of 99.3% and 87.45% is achieved for two class problem and seven class

problem respectively. The comparison of softmax, SVM and tree ensemble used

in this work is listed in Table 5.4. It can be seen that the performance decision

tree is high as compared to SVM and softmax. Validation accuracy is evaluated
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Table 5.4: Validation Accuracies during CNN training

Softmax SVM Tree Ensemble
2-Class 99.35 99.8 100
7-Class 87.45 96.20 99.27

at the time of training. The system calculate the validation of the batch which

is being fed to the network. The training and validation loss at the training time

can be observed in Figure 5.3 for 2 class and 7 class problem. System validation

Figure 5.2: Training and Validation Loss during CNN training.

accuracy at the time of training can be viewed in Figure 5.3. Validation accuracy

is calculated along with system validation and training loss. After fine tuning of

the network, the layers of the network can be analyzed by a test image at the

input of the network as shown in Figure 5.5a. At the first layer of fine tuned

CNN, the convolutional layer (conv1) features learned are more generic as shown

in Figure 5.4. It can be seen that these learned filters at first the convolutional

layers contain gradients of different frequencies, blobs and orientations of colors

which are of importance for the transfer of weights the cervical cell image.

For a cervical cells, these filters can be visualized for each of the layer of CNN.

The features learned at convolutional layer conv1 for a test cervical cell is shown
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Figure 5.3: Validation Accuracy during CNN training.

in Figure 5.5. Features learned at convolutional layers conv1toconv5 are shown

in Figure 5.6. As you get deeper the convolutional layers there are more abstract

features and provide more information for the test cervical cell image.

Along with these filters learned at the convolutional layers, the activation or the

feature map for the particular cervical cell can be visualized. Activation map for

the cell shown in Figure 5.5a is shown in Figure 5.7. Strongest activation for the

cervical cell in 5.5a at conv5 can be viewed in Figure 5.8. Feature set at fully

connected layer is shown in Figure 5.9 and can be observed that features are more

abstract as compared to the previous layers. Fully connected layer shows features

learned for the seven classes i.e. superficial, intermediate, columnar epithelial,

mild dysplasia, moderate dysplasia, severe dysplasia and carcinoma.

Strongest activation for the cell at pooling layer is shown in Figure 5.10. White

pixels shows strong positive activation and black pixels shows strong negative acti-

vation while gray does not activate strongly. It can be observed that the strongest

activation activates negatively on right edges, and positively on left edges. It can

be observed that the pooling operation on cervical cell and the previous activation
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Figure 5.4: Filters learned at First Convolutional layer (conv1).

maps summarizes by highlighting the activated spatial locations. In deeper layers

of CNN, features learned are more abstract as shown in Figure 5.9.

5.7 Test analysis

The test set is fed to three classifiers i.e. softmax, SVM and tree ensemble using

multiple crop testing. Comparison of performance for the classifiers is shown

in Table 5.5. It can be seen that tree ensemble outperforms the classification

accuracies of SVM and softmax regression. Malignancy score of several example

from the validation set of Herlev dataset is shown in Figure 5.11 and Figure ?? for

the abnormal and normal cell images respectively. Classification of a validation cell

image is done using tree ensemble classifier. Figure 5.12 shows test cell images that
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Figure 5.5: (a)Input Test Image (b)Feature maps learned at First Convolu-
tional layer.

are misclassified ( normal misclassified as abnormal and abnormal misclassified as

normal).

Table 5.5: Classification Accuracies after Classifier training on deep features

Softmax SVM Tree Ensemble
2-Class 98.80 99.10 99.23
7-Class 97.21 98.12 98.85

Evaluation parameters of the classification performance i.e. accuracy, harmonic

mean, area under the curve, specificity and sensitivity of the fine-tuned CNN in

comparison with the previous methods is illustrated in table 5.6. The mean values

of accuracy, harmonic mean, area under the curve, specificity and sensitivity from

fine-tuned CNN with t-Ensemble classifiers are 99.23%, 99.14%, 99.9%, 99.2% and

99.1% respectively for the two class problem. The mean values of accuracy, har-

monic mean, area under the curve, specificity and sensitivity from fine-tuned CNN

with t-Ensemble classifiers for seven class problem are 98.85%, 98.77%, 99.8%,

98.8% and 99.74% respectively. These performance metrics outperforms all the

previous performance metrics except Sens in the literature.
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Figure 5.6: Features learned at (a). conv2, (b). conv3, (c). conv4 and (d).
conv5 for cervical cell
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Figure 5.7: Montage of deepest Pooling Layer feature maps

Figure 5.8: Strongest activation at deepest Convolutional layer(conv5)
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Figure 5.9: Fully connected layer feature maps for Seven classes

Figure 5.10: Strongest activation at deepest pooling layer
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Figure 5.11: Correctly classified malignant cells, column 1 to 4 are mild dys-
plasia, moderate dysplasia, severe dysplasia and carcinoma, respectively.
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Table 5.6: Hybrid and deep features based approaches without segmentation

References Method Dataset
Performance
Measure

Jantzen et al. [38]
Pap Smear
Benchmarks

Herlev Dataset
Accuracy : 93.6%
Sensitivity : 98.8%
Specificity : 79.3%

Jantzen et al. [37]

Particle swarm
Optimization
and nearest neighbor (1nn)
Classifier

Herlev Dataset
Accuracy : 96.7%
Sensitivity : 98.4%
Specificity : 92.2%

Marinakis et al. [52]
Genetic Algorithm based
Feature selection and
1-nn Classifier

Herlev Dataset
Accuracy : 96.8%
Sensitivity : 98.5%
Specificity : 92.1%

Plissiti et al. [39]
Principle Component Analysis
for Feature selection and
SVM Classifier

Herlev Dataset Harmonic Mean : 96.9%

Bora et al. [27]
Ensemble
Classifier

Herlev Dataset
Accuracy : 96.5%
Sensitivity : 99%
Specificity : 89.7%

Guo et al. [40]
Local Binary Pattern
for feature extraction

Herlev Dataset Area under the curve : 96.4%

Zhang et al. [50]
Convolutional Neural Networks
for deep feature extraction and
Classification

Herlev Dataset
Accuracy : 98.3%
Sensitivity : 98.2%
Specificity : 98.3%

This work
Convolutional Neural Networks
for deep feature extraction
SVM Classifier

Herlev Dataset
Accuracy : 99.10%
Sensitivity : 98.9%
Specificity : 99.2%

This work
Convolutional Neural Networks
for deep feature extraction and
Ensemble tree Classifier

Herlev Dataset
Accuracy : 99.23%
Sensitivity : 99.2%
Specificity : 99.3%



Implementation and Performance Evaluation 48

Classification accuracies of each of the seven cell categories are calculated feeding

all the images in all the categories as test to the classifier trained on fine-tuned

CNN weights. Classifier shows perfect performance on superficial squamous ep-

ithelial (Class 1), intermediate squamous epithelial (Class 2), mild squamous non-

keratinizing dysplasia (Class 4) and moderate squamous non-keratinizing dysplasia

(Class 5). The performance of the classifier is slightly low on columnar epithelial

(Class 3) and severe squamous non-keratinizing dysplasia (Class 6). The classi-

fication accuracy of Class 4 and Class 6 is 97.5% and 97.79% respectively. Clas-

sification accuracy on squamous cell carcinoma in situ intermediate (Class 7) is

99.20%. The class scores are illustrated in table 5.7

(a) (b)

Figure 5.12: Misclassified (a)Normal as Abnormal (b) Abnormal as Normal

5.8 Computational complexity

In the training phase, CNN1 is trained on Corei7 machine with clock speed 2.8

GHz, Nvidia 1080Ti GPU and 8 GB of memory on MATLAB R2017b. The average

training time of a fine-tuned CNN running for 30 epochs is about 4 hours and 30

minutes for two class problem and 8 hours and 20 minutes. In the testing phase,

the system takes 8 seconds to classify a test image into normal and abnormal

classes. Using multiple crop testing i.e. Npatches x Ncrops = 3000 classifications

and score aggregation, the average time for the testing of one cell image is around

8 seconds.
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Table 5.7: Herlev Dataset correct classifications.

Category Class Cell type Count Accuracy
Normal 1 Superficial squamous epithelial 74 100%
Normal 2 Intermediate squamous epithelial 70 100%
Normal 3 Columnar epithelial 98 97.50%

Abnormal 4 Mild squamous non-keratinizing dysplasia 182 100%
Abnormal 5 Moderate squamous non-keratinizing dysplasia 146 100%
Abnormal 6 Severe squamous non-keratinizing dysplasia 197 97.8%
Abnormal 7 Squamous cell carcinoma in situ intermediate 150 99.20%



Chapter 6

Conclusion and Future Work

6.1 Limitations

Despite higher performance of deep learning based cervical cell screening system,

it has some limitations. Classification time of testing a cropped single cell image

is 8 seconds for the system which is very slow in clinical setting as their are large

number of samples from one pap smear slide image to be classified. This limitation

can be addressed by neglecting the process of data augmentation step for the test

data i.e. 300 image patches else only multiple crop testing can be used for clas-

sification problem. Although this increases the speed of the system as it requires

only 0.08 seconds for classification while accuracy of the system is compromised

by 1.5%. Although classification accuracy of the system on the Herlev dataset

is high, the system misclassify few cells from Columnar epithelial class i.e 2.5%

of the cells are misclassified, Severe squamous non-keratinizing dysplasia class i.e.

2.2% are misclassified and Squamous cell carcinoma in situ intermediate class i.e.

0.80% are misclassified. This misclassification error is not an ideal case because in

real world these severe abnormal cells must not be classified as normal.

50
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6.2 Conclusion

This thesis considers a convolutional neural network based approach for automatic

feature extraction of cell image using Deep Convolutional Neural Network and

classification of cervical cell image using different classification approaches i.e.

softmax, SVM, and ensemble of decision trees.

Coarsely centered nucleus cell image patches are presented to the CNN as the

input. Initial weights or features maps are transferred from a pre-trained network

to a new CNN for fine tuning on cervical cell dataset. The features learned by the

new fine-tuned CNN are extracted and fed to a softmax, SVM and ensemble of

decision trees with surrogate splits classifiers along with training data for training.

Validation accuracy of the dataset is calculated by feeding validation set to the

trained classifier.

In the testing phase, for a single cell image to be test whether malignant or benign,

the test image patches are generated same as training data and multiple crop

testing is applied on all the patches to generate classification score by the classifier.

The score of the classifier is then aggregated by averaging the score of all the crops

extracted from the test image to get the final score.

The proposed method yields better classification accuracy i.e. 99.23% (Ensemble

of decision trees) and 99.10% (Support vector machines) which is encouraging as

compared to the previous best which is 98.6% [50] on Herlev University Pap smear

dataset. A significant feature of the proposed model is that it do not require prior

segmentation and manual feature extraction mechanisms. By looking into the

results produced by the model, it can be argued with a comparatively higher degree

of confidence that it can be effectively and efficiently used for the development of

auto-assisted screening systems.
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6.3 Future Work

Current system performance is evaluated on the images with majority of the cell

are individual cells . This research aims to address the problem of feature ex-

traction and classification of overlapping cells. Good classification accuracy is

achieved on cell image data using ensemble of trees classifiers. In the future, the

effect of inflammatory cells and cell particles (i.e. blood, mucus, bacteria, etc.) on

classification accuracy need to be analyzed. The system should avoid the misclas-

sification of inflammatory cells and cell particles as normal and abnormal cells.

Specific classifiers relying on deep learning may be used to cater these problems.
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